Subject: Algebra II

School Year: 2023-2024

Title or Topics w/ NYS Standards	Essential Questions & Vocabulary	Content Skills (Activities to cover Essential Questions)	Major Assessments (Tests, Project, etc.)	Time Frame
 Algebraic Essentials Review A-CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. N-RN.2 Rewrite expressions involving radicals and rational exponents using the properties of exponents. A-SSE.2 Use the structure of an expression to identify ways to rewrite it. For example, see x⁴ - y⁴ as (x²)² - (y²)², thus recognizing it as a difference of squares that can be factored as (x² - y²)(x² + y²). 	 What are basic algebraic rules that must be followed? How can I manipulate expressions? What are the different ways of solving linear equations? How can I use my calculator in an effective way that will reveal further information about the problem? Variables Solve Algebraically Exponent Base Polynomial Distribution 	 Variables, Terms, and Expressions Solving Linear Equations Common Algebraic Expressions Basic Exponent Manipulation Multiplying Polynomials Using Tables on Your Calculator 	 eMath Homework assignments Quiz 	September
 Functions as the Cornerstone of Algebra F-BF.4 Find inverse functions. F-IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum. F-IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key 	 What information can I gain by manipulating functions? What are ways that I can describe a function? What are different ways of combining two or more functions and why might this be useful? How can I use my calculator in an effective way that will reveal further information about the problem? Functions Composition Domain Input Range Output 	 Introduction to Functions Function Notation Function Composition The Domain and Range of a Function One to One Functions Inverse Functions Key Features of Functions 	 eMath Homework assignments Quiz 	September

 features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* Linear Functions, Equations, and Their Algebra F-IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* F-LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input- output pairs (include reading these from a table). F-LE.5 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input- output pairs (include reading these from a table). F-LE.5 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input- output pairs (include reading these from a table). F-BF.4 Find inverse functions. A-REI.6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. 	 One-to-one Inverse What are the different ways of solving linear equations (or systems of linear equations)? How can I manipulate the form of a linear function to gain more information about said function? How can I use a linear function to model real world behavior and what can I learn or predict from that model? How can I use my calculator in an effective way that will reveal further information about the problem? Slope Y-Intercept Average Rate of Change Slope-Intercept Point-Slope Inverse Piecewise Interval System 	 Direct Variation Average Rate of Change Forms of a Line Linear Modeling Inverses of Linear Functions Piecewise Linear Functions Systems of Linear Equations (Primarily 3 by 3) 	 eMath Homework assignments Quiz Marking Period Exam (Covers Units 1-3) 	September - October
 Exponential and Logarithmic Functions N-RN.2 Rewrite expressions involving radicals and rational exponents using the properties of exponents. N-RN.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^{1/3} to be the cube root of 5 because we want 	 How do I manipulate exponents to give me the information that I need? What are the best ways of solving an exponential function? How can I model real world scenarios with exponential functions and what can I learn from those models? How can I use logarithms to make solving exponential equations easier? How can I manipulate logarithms to give 	 Integer Exponents Rational Exponents Exponential Function Basics Finding Equations of Exponentials The Method of Common Bases Exponential Modeling with Percent Growth and 	 eMath Homework assignments 2 Quizzes 	October - November

 (5^{1/3})³ = 5(^{1/3})³ to hold, so (5^{1/3})³ must equal 5. F-LE.5 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table). F-LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table). A-CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. A-SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* F-IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantites, interpret key features different signal and explain properties with and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative 	 me the information that I need? How can I use my calculator in an effective way that will reveal further information about the problem? Exponent Rational Square Root Cube Root Exponential Exponential Growth Exponential Decay Common Base Percent Growth Percent Decay Logarithm Natural Logarithm Exponential Form Compound Interest Principal Half-life Radioactive Decay 	 Decay Mindful Percent Manipulations Introduction to Logarithms Graphs of Logarithms Logarithms Laws Solving Exponential Equations Using Logarithms The Number e and the Natural Logarithm Compound Interest Newton's Law of Cooling
features include: intercepts; intervals where the function is increasing,		

 and end behavior, and trigonometric functions, showing period, midline, and amplitude. F-LE.4 For exponential models, express as a logarithm the solution to ab^{ct} = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology. F-IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. F-BF.1(a) Determine an explicit expression, a recursive process, or steps for calculation from a context. F-BF.1(b) Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. 				
 Sequences and Series F-IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1. F-BF.2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.* F-LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table). 	 Can I identify arithmetic and geometric sequences? What are the different ways of writing a sequence? How can I find the sum of many numbers? How can I apply series to real world situations to make problem solving easier? How can I use my calculator in an effective way that will reveal further information about the problem? Sequence Series Summation Arithmetic Geometric Interest Rate 	 Sequences Arithmetic and Geometric Sequences Summation Notation Arithmetic Series Geometric Series Mortgage Payments 	 eMath Homework assignments Quiz Marking Period Exam (Covers Units 4-5) 	November

A-SSE.4 Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.*	 Principal Down Payment Monthly Payment 		a aMath	December
 Quadratic Functions and Their Algebra F-IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* A-SSE.2 Use the structure of an expression to identify ways to rewrite it. For example, see x⁴ - y⁴ as (x²)² - (y²)², thus recognizing it as a difference of squares that can be factored as (x² - y²)(x² + y²). A-APR.3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. A-CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. F-BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects 	 and how do I use that model to learn more information about the situation? How can I use my calculator in an effective way that will reveal further information about the problem? Quadratic Zeros Roots X-Intercepts Factors Trinomial Factoring by Grouping Quadratic Formula Inequality Greater than Less than Completing the Square Vertex Minimum Maximum Center Radius Directrix Focus 	 Quadratic Function Review Factoring Factoring Trinomials Complete Factoring Factoring by Grouping The Zero Product Law Quadratic Inequalities in One Variable Completing the Square and Shifting Parabolas Modeling with Quadratic Functions Equations of Circles The Locus Definition of a Parabola 	 eMath Homework assignments Quiz 	December

 on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. A-REI.7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = -3x and the circle x² + y² = 3. G-GPE.2 Derive the equation of a parabola given a focus and directrix. 				
 F-BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. 	 How do I mathematically indicate that a function has been transformed? How can I use my calculator in an effective way that will reveal further information about the problem? Function Translation Reflection Horizontal Stretch Horizontal Compression Vertical Stretch Vertical Compression Even Function Odd Function 	 Shifting Functions Reflecting Parabolas Vertically Stretching Functions Horizontally Stretching Functions Even and Odd Functions 	 eMath Homework assignments Quiz Midterm Exam (Covers Units 1- 7) 	December – January
 Radicals and the Quadratic Formula F-IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* A-REI.2 Solve simple rational and radical 	• How can I solve quadratic equations that cannot be factored or solved via completing the square?	 Square Root Functions Solving Square Root Equations The Basic Exponent Properties Fractional Exponent Properties More Exponent Practice The Quadratic Formula More Work with the Quadratic Formula 	 eMath Homework assignments Quiz 	January

equations in one variable, and give				
examples showing how extraneous				
solutions may arise.				
• N-RN.2 Rewrite expressions involving				
radicals and rational exponents using the				
properties of exponents.				
• N-RN.1 Explain how the definition of the				
meaning of rational exponents follows				
from extending the properties of integer				
exponents to those values, allowing for a				
notation for radicals in terms of rational				
exponents. For example, we define $5^{1/3}$ to				
be the cube root of 5 because we want				
(5 ^{1/3}) ³ = 5(^{1/3}) ³ to hold, so (5 ^{1/3}) ³ must				
equal 5.				
• A-REI.4(b) Solve quadratic equations by				
inspection (e.g., for x ² = 49), taking square				
roots, completing the square, the				
quadratic formula and factoring, as				
appropriate to the initial form of the				
equation. Recognize when the quadratic				
formula gives complex solutions and write				
them as a \pm bi for real numbers a and b.				
Complex Numbers	How do I work with solutions that fall	 Imaginary Numbers 	eMath	January –
• N-CN.1 Know there is a complex number i	outside of the real number system?	Complex Numbers	Homework	February
such that $i^2 = -1$, and every complex	What mathematical properties do	Solving Quadratic	assignments	
number has the form a + bi with a and b	imaginary numbers follow?	Equations with Complex	• Quiz	
real.	How can I use my calculator in an effective	Solutions		
• N-CN.2 Use the relation i ² = -1 and the	way that will reveal further information	• The Discriminant of a		
commutative, associative, and distributive		Quadratic		
properties to add, subtract, and multiply complex numbers.	Imaginary Number			
 A-REI.4 Solve quadratic equations in one 	Imaginary Unit			
• A-REI.4 Solve quadratic equations in one variable.	Complex Number			
 N-CN.7 Solve quadratic equations with 	Quadratic Formula			
real coefficients that have complex	Complex Solution			
solutions.	Discriminant			
	Real			
	Imaginary			
	Irrational			

 Polynomial and Rational Functions F-IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* F-BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. A-APR.3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. F-IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* A-APR.4 Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x² + y²)² = (x² - y²)² + (2xy)² can be used to generate Pythagorean triples. A-APR.6 Rewrite simple rational 	 Rational Equal Unequal How do I generalize the behavior of polynomial functions? How can I manipulate complex fractions? How do I divide, or know if I can divide, a polynomial if it is not easily factorable? How can I use my calculator in an effective way that will reveal further information about the problem? Power Function End Behavior Polynomial Function Rational Function Domain Asymptote Factor Common Denominator Least Common Multiple Complex Fractions Remainder Theorem Long Division Equation Inequality 	 Power Functions Graphs and Zeroes of a Polynomial Creating Polynomial Functions Polynomial Identities Introduction to Rational Functions Simplifying Rational Expressions Multiplying and Dividing Rational Expressions Combining Rational Expressions Using Addition and Subtraction Complex Fractions Polynomial Long Division The Remainder Theorem Solving Rational Inequalities Reasoning About Radical and Rational Equations 	 eMath Homework assignments 2 Quizzes Marking Period Exam (Covers Units 9-10) 	February – March
---	--	---	--	---------------------

	expressions in different forms; write							
	a(x)/b(x) in the form $q(x) + r(x)/b(x)$, where							
	a(x), b(x), q(x), and r(x) are polynomials							
	with the degree of r(x) less than the							
	degree of b(x), using inspection, long							
	division, or, for the more complicated							
	examples, a computer algebra system.							
•	A-APR.2 Know and apply the Remainder							
	Theorem: For a polynomial p(x) and a							
	number a, the remainder on division by x -							
	a is p(a), so p(a) = 0 if and only if (x - a) is a							
	factor of p(x).							
•	A-REI.2 Solve simple rational and radical							
	equations in one variable, and give							
	examples showing how extraneous							
	solutions may arise.							
•	A-CED.1 Create equations and inequalities							
	in one variable and use them to solve							
	problems. Include equations arising from							
	linear and quadratic functions, and simple							
	rational and exponential functions.							
•	A-REI.1 Explain each step in solving a							
	simple equation as following from the							
	equality of numbers asserted at the							
	previous step, starting from the							
	assumption that the original equation has							
	a solution. Construct a viable argument to							
	justify a solution method.							
Th	e Circular Functions	•	What is a radian and how does that relate	•	Rotations and Angle	٠	eMath	March –
•	F-TF.1 Understand radian measure of an		to the arc length of circles in the real		Terminology		Homework	Apri
	angle as the length of the arc on the unit		world?	•	Radian Angle		assignments	
	circle subtended by the angle.	•	How do the various trigonometric functions		Measurement	٠	2 Quizzes	
•	F-TF.2 Explain how the unit circle in the		relate to one another?	•	The Unit Circle			
	coordinate plane enables the extension of	•	How can I come up with a trigonometric	•	The Definition of the Sine			
	trigonometric functions to all real		function that describes a real world		and Cosine Functions			
	numbers, interpreted as radian measures		scenario and use that function to gain more	•	More Work with the Sine			
	of angles traversed counterclockwise		information about that scenario?		and Cosine Functions			
	around the unit circle.	•	How can I use my calculator in an effective	•	Basic Graphs of Sine and			
•	F-TF.8 Prove the Pythagorean identity		way that will reveal further information		Cosine			
	$sin^{2}(\theta) + cos^{2}(\theta) = 1$ and use it to find		about the problem?					

$sin(\theta)$, $cos(\theta)$, or $tan(\theta)$ given $sin(\theta)$, $cos(\theta)$,	• Sine	Vertical Shifting of	[]
or tan(θ) and the quadrant of the angle.	Cosine	Sinusoidal Graphs	
 F-TF.5 Choose trigonometric functions to 	Tangent	The Frequency and Period	
model periodic phenomena with specified	_	of a Sinusoidal Graph	
amplitude, frequency, and midline.*		Sinusoidal Modeling	
• F-IF.7(e) Graph exponential and	Degree Dedian	The Tangent Function	
logarithmic functions, showing intercepts	Radian	 The Reciprocal Functions 	
and end behavior, and trigonometric	Arc Length	• The Recipiocal Functions	
functions, showing period, midline, and	Radius		
amplitude.	Unit Circle		
	Trigonometric		
	Amplitude		
	Period		
	Frequency		
	Midline		
	Phase Shift		
	Cosecant		
	Secant		
	Cotangent		
	Reciprocal		
Probability	How can I calculate different probabilities	Introduction to Probability	• eMath April
• S-CP.1 Describe events as subsets of a	and how to they relate to one another?	 Sets and Probability 	Homework
sample space (the set of outcomes) using	How can I determine if two events have a	Adding Probabilities	assignments
characteristics (or categories) of the	relation with one another?	Conditional Probability	• Quiz
outcomes, or as unions, intersections, or	How can I use data to make inferences	 Independent and 	 Marking Period
complements of other events ("or," "and,"	about connections?	Dependent Events	Exam (Covers
"not").	• How can I use my calculator in an effective	Multiplying Probabilities	Units 11-12)
• S-CP.7 Apply the Addition Rule, P(A or B) =	way that will reveal further information		
P(A) + P(B) - P(A and B), and interpret the	about the problem?		
answer in terms of the model.	Probability		
S-CP.3 Understand the conditional	• Sets		
probability of A given B as P(A and B)/P(B),	And		
and interpret independence of A and B as	• Or		
saying that the conditional probability of A	Given		
given B is the same as the probability of A,	Conditional		
and the conditional probability of B given	Independent		
A is the same as the probability of B.	Dependent		
• S-CP.4 Construct and interpret two-way			
frequency tables of data when two			
categories are associated with each object			

 a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results. S-CP.5 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer. S-CP.6 Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model. S-CP.2 Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. 				
 Statistics S-IC.3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each. S-ID.4 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are 	 How can I effectively collect data? What can I learn from collecting data? What can I calculate to describe the data that I have collected? How can I mathematically manipulate my data to learn more information about the topic that I am studying? Can I say, with statistical confidence, that two variables have a relationship (not necessarily a cause-and-effect 	 Variability and Sampling Population Parameters The Normal Distributions The Normal Distributions and Z-Scores Sample Means Sample Proportions The Difference in Samples Means 	 eMath Homework assignments Quiz Marking Period Exam (Covers Units 1-13) 	Мау

 data sets for which such appropriate. Use calcul spreadsheets, and table under the normal curve S-IC.1 Understand statist for making inferences a parameters based on a from that population. S-IC.2 Decide if a specific consistent with results generating process, e.g. For example, a model s falls heads up with probaresult of 5 tails in a ro question the model? 	 ators, es to estimate areas es to estimate areas es to estimate areas estics as a process about population random sample ied model is from a given data- a, using simulation. ays a spinning coin bability 0.5. Would 	relationship)? Can I determine if two groups of individuals are different? Can I examine the relationship between two variables in such a way that I learn more information about how those two variables relate (or don't relate) to one another? How can I use my calculator in an effective way that will reveal further information about the problem? Sample Population Study Experiment	•	Linear Regression and Lines of Best Fit Other Types of Regression	
 experiment to compare use simulations to decide between parameters ar S-IC.4 Use data from a setimate a population reproportion; develop a rethrough the use of simular random sampling. S-ID.6(a) Fit a function set functions fitted to data in the context of the data functions or choose a fue by the context. Emphase quadratic, and exponer 	de if differences re significant. sample survey to mean or margin of error ulation models for to the data; use to solve problems ata. Use given unction suggested size linear,	Median Mode Standard Deviation Interquartile Range Outlier Normal Distribution Z-Scores Normalcdf Percentile Invnorm Sample Mean Sample Mean Sample Proportion Linear Regression Exponential Regression Trigonometric Regression R-value			
		Regents Algebra II Exam is Monday, Jun	ne 24	1, 2024	