Subject and Grade:	Regents Chemistry (11th grade)	School Year:	2023-2024
Unit Title:	1 - Matter and Measurement	Author/s:	Caitlin Rejman

NYS Next Gen Learning Standards	Essential Question/Big Ideas
HS-PS2-6. Communicate scientific and technical information about why the particulate-level structure is important in the functioning of designed materials.	 Why does the way you measure and write down a number matter? Why is accuracy and precision important in chemistry? Why is the quoted number of significant figures important when presenting chemical data? How is matter in the universe depicted, organized, and categorized?

Brief Unit Summary	Content Vocabulary
This unit focuses on basic classification and properties of matter, and the way it is measured both mathematically and experimentally. Proper measurement techniques with numerical expressions with proper units are also addressed.	S.I. unit, intensive, extensive, significant figures, precision, accuracy, matter, element, compound, mixture, heterogeneous mixture, homogeneous mixture, pure substance, particle diagram, chromatography, filtration, distillation, scientific notation

Content Skills or Learning Targets	Assessments (Pre-Assessments, Formative, and Summative)	Timeframe
Classify matter and separation of matter, construct particle diagrams to represent matter, determine scientific notation, calculate and convert using dimensional analysis,	Labs: Safety, Quantitative Observations, Qualitative Observations, Mixture Separation Quizzes: 2-3 topic quizzes	2 weeks September
differentiate between accuracy and precision, distinguish sig figs, and calculate density	Test: Unit 1 Exam	

Differentiation/Enrichment	Materials	Resources

Subject and Grade:	Regents Chemistry	School Year:	2023-2024
Unit Title:	2 - Atomic Theory	Author/s:	Caitlin Rejman

NYS Next Gen Learning Standards	Essential Question/Big Ideas
HS-PS4-4. Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.	 What particles make up an atom? How can we describe the electron configuration of an atom? How can nuclei of the same element be different from each other?

Brief Unit Summary	Content Vocabulary
The focus of this unit is the atom as we know it today, its subatomic particles, and mass. The evolution of this model starting with Dalton's model and ending with the present Wave-Mechanical model is examined by looking at the change in experimental evidence from a subatomic particle perspective. Differences in elements and atoms such as ions and isotopes are also investigated.	allotrope, anion, atom, atomic mass, atomic mass unit(amu), atomic number, Bohr model, cation, electron, electron configuration, excited state, ground state, ion, isotope, kernel electrons, Lewis dot diagram, mass number, neutron, nuclear charge, nucleons, nucleus, orbit, orbital, proton, valence electrons, wave-mechanical model

Content Skills or Learning Targets	Assessments (Pre-Assessments, Formative,	Timeframe
	and Summative)	

Examine changes and experimental evidence in	Labs: Isotopes of Pennium	3 Weeks
evolution of atomic model, identify the		September - October
subatomic particles of an atom and their	Quizzes: 2-3 topic quizzes	
properties, determine the number of protons,	Test: Unit 2 Exam	
neutrons, and electrons in a neutral atom and	lest. Onit 2 Exam	
an ion, differentiate between atomic number,		
mass number, and (average) atomic mass,		
differentiate between an anion and a cation,		
understand the derivation/basis of the atomic		
mass unit (amu), distinguish between ground		
and excited state, identify and define isotopes,		
calculate the (average) atomic mass for all		
isotopes of an element, express electron		
configurations, generate Bohr and Lewis Dot		
diagrams, differentiate between kernel and		
valence electrons		

Differentiation/Enrichment	Materials	Resources

Subject and Grade:	Regents Chemistry	School Year:	2023-2024
Unit Title:	3 - Periodic Table	Author/s:	Caitlin Rejman

NYS Next Gen Learning Standards	Essential Question/Big Ideas
HS-PS1-1. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the	 How and why is the periodic table arranged the way it is? How can the periodic table be used to predict what will happen

outermost energy level of atoms.	when substances interact?3. How do electron arrangements show trends predicting and causing chemical reactions?
----------------------------------	--

Brief Unit Summary	Content Vocabulary
This unit looks at organization, patterns, and periodicity of the periodic table and all of the elements. Element families, element trends, types of elements and their characteristics, and element location within the table are all investigated.	ionization energy, electronegativity, atomic radius, ionic radius, chemical reactivity, metallic character, nonmetallic character, metals, metalloids, nonmetals, alkali metals, alkaline earth metals, halogens, noble gases, transition metals, periodic law, periods, groups, octet, phases of matter, solids, liquids, gases, diatomic elements, isoelectronic

Content Skills or Learning Targets	Assessments (Pre-Assessments, Formative,	Timeframe
	and Summative)	
Describe the origin of the periodic table, state	Labs: Flame Test, Case File #1 Conflict and	3 Weeks
the modern period law, "key" the periodic	Cans	October - November
table according to metals vs. nonmetals and		
all 3 phases, explain how electron	Quizzes: 2-3 topic quizzes	
configuration is related to the placement		
within a period and a group, identify and state	Tests: Unit 3 Exam	
the properties of the following groups in the		
periodic table: alkali metals, alkaline earth		
metals, halogens, noble gases, transition		
metals, analyze the trends of the following		
properties within period and groups of		
elements including: ionization energy,		
electronegativity, atomic radius, chemical		
reactivity, metallic/nonmetallic character		

Differentiation/Enrichment	Materials	Resources
----------------------------	-----------	-----------

Subject and Grade:	Regents Chemistry	School Year:	2023-2024
Unit Title:	4 - Bonding	Author/s:	Caitlin Rejman

NYS Next Gen Learning Standards	Essential Question/Big Ideas
HS-PS1-3. Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.	 How is matter held together? What different types of bonding exist and how are they different? How do ionic and covalent bonds form? Why do they work? How do molecules interact with one another?

Brief Unit Summary	Content Vocabulary
· · · · · · · · · · · · · · · · · · ·	bond, octet rule, exothermic, endothermic, ionic bond, covalent bond, oxidation number, polyatomic ions, stock system, binary compound, ternary compound, polar molecule, nonpolar molecule, intermolecular forces (IMF's)

Content Skills or Learning Targets	Assessments (Pre-Assessments, Formative,	Timeframe
	and Summative)	
Differentiate compounds by chemical and	Labs: 3D Models of Covalent Bonds, Ionic	3 Weeks
physical properties, differentiate ionic and	Bond Matching, Case File #2 When Bonds	November - December
molecular(covalent) compounds, describe	Break	
electron position between elements in		
different chemical bonds, describe molecular	Quizzes: 2-3 topic quizzes	
polarity by the shape and distribution of		

charge, explain radius size of ions, articulate	Test: Unit 4 Exam	
energy changes and stability with breaking		
and forming bonds, examine physical		
properties of substances based on chemical		
bond type and intermolecular forces, draw		
electron-dot diagrams for elements,		
compounds, and ions, calculate		
electronegativity differences within a		
compound		

Differentiation/Enrichment	Materials	Resources

Subject and Grade:	Regents Chemistry	School Year:	2023-2024
Unit Title:	5 - Moles and Stoich	Author/s:	Caitlin Rejman

NYS Next Gen Learning Standards	Essential Question/Big Ideas
HS-PS1-2. Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.	 How do equations relate to the law of conservation of mass? How do you determine an amount of something? What type of chemical reactions exist? How are products and reactants related?
HS-PS1-7. Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.	

Brief Unit Summary	Content Vocabulary
Diter Chit Summary	

This unit starts to look at full chemical equations, what kind of reaction	mole, formula mass, gram formula mass, coefficient, subscript, species,	
is being expressed, and the math behind balancing and conserving	law of conservation of mass, law of conservation of energy, balanced	
matter and energy. It expands on the previous bonding unit of balancing	equation, synthesis reaction, decomposition reaction, single-replacement	
compounds with ratios of elements, and now looks at starting reactants	reaction, double-replacement reaction, molecular formula, empirical	
in relation to ending products.	formula, percent mass	

Content Skills or Learning Targets	Assessments (Pre-Assessments, Formative,	Timeframe
	and Summative)	
Determine the amount of moles in a substance	Lab: Composition of Hydrates, Conservation of	3 Weeks
and be able to efficiently convert between	Mass, Relating Moles to Coefficients, Case File	December
grams, identify when equations are not	#3: Case of the Poisonous Pill	
balanced and calculate proper molar ratios,	Quizzes: 2-3 topic guizzes	
differentiate between equation types, calculate	Quizzes. 2-5 topic quizzes	
percent composition within a compound, and	Test: Unit 5 Exam	
calculate empirical formula		

Differentiation/Enrichment	Materials	Resources

Subject and Grade:	Regents Chemistry	School Year:	2023-2024
Unit Title:	6 - Physical Behaviors of Matter	Author/s:	Caitlin Rejman

NYS Next Gen Learning Standards	Essential Question/Big Ideas
---------------------------------	------------------------------

HS-PS1-9. Analyze data to support the claim that the combined gas law describes the relationships among volume, pressure, and temperature for a sample of an ideal gas.	 How do gases work? What is physical change? How does energy affect motion of particles?
HS-PS1-10. Use evidence to support claims regarding the formation, properties and behaviors of solutions at bulk scales.	
HS-PS3-1. Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.	

Brief Unit Summary	Content Vocabulary
This unit looks at only the physical properties and changes of the phases of matter, and their relationship with temperature, volume, and pressure. Energy calculations in the form of heat are calculated to show these changes between phases and their relative energy.	Absolute Zero, Avogadro's Law, normal boiling point, compound cooling curve, deposition, energy, element, evaporation, heat, heat of fusion, heat of vaporization, heating curve, heat transfer, kinetic energy, kinetic molecular theory, lattice, matter, mixture, melting point, potential energy, sublimation, temperature, vapor pressure

Content Skills or Learning Targets	Assessments (Pre-Assessments, Formative, and Summative)	Timeframe
Distinguish between the three phases of	Lab: Heating and Cooling Curve Lab,	3 Weeks
matter by identifying their different properties	Calorimetry, Molar Volume of a Gas	January
and representing them with particle diagrams,		
perform simple conversions between Celsius	Quizzes: 2-3 topic quizzes	
and Kelvin temperature scales, differentiate		
between exothermic and endothermic	Test: Unit 6 Exam	
reactions/changes, identify phase changes,		
and understand how to read a heating or		
cooling curve, define heat, and understand		
how it varies from temperature, solve heat		
equations, solve gas law problems using the		
following laws: Avogadro's Law, Combined		

Gas Law, and Daltons Law of Partial	
Pressures, state and understand the Kinetic	
Molecular Theory (KMT), and understand the	
relationship between temperature, volume,	
and pressure among gases using the following	
gas laws: Charles Law, Boyles Law, Gay	
Lussacs Law.	

Differentiation/Enrichment	Materials	Resources

Subject and Grade:	Regents Chemistry	School Year:	2023-2024
Unit Title:	7 - Solutions	Author/s:	Caitlin Rejman

NYS Next Gen Learning Standards	Essential Question/Big Ideas
HS-PS1-10 .Use evidence to support claims regarding the formation, properties and behaviors of solutions at bulk scales.	 How can concentration be quantified? Where does the solid go when a solution is made? How can solutions be described and determined? What properties determine the solubility of compounds?

Brief Unit Summary	Content Vocabulary
This unit looks at the properties of solutes dissolved in solvents to form	Alloy, aqueous, boiling point, boiling point elevation, colligative
a solution. Various ways to calculate and determine concentrations of	properties, colloid, concentration, dilute, freezing point depression,
solutions are investigated and saturation amount and its effects are	heterogeneous, homogeneous, insoluble, miscible, mixture, molarity,
analyzed.	parts per million, percent by mass, percent by volume, precipitate,

	saturated, solubility, soluble, solution, solute, solvent, supersaturated, suspension, Tyndall effect, unsaturated
--	--

Content Skills or Learning Targets	Assessments (Pre-Assessments, Formative, and Summative)	Timeframe
	,	
Differentiate between heterogeneous and	Lab: Solubility Curve of KNO3, Ice Cream,	3 Weeks
homogeneous mixtures and identify their	Bonds, Polarity, and Solubility	January - February
properties, define solubility and explain its		
contributing factors, distinguish between	Quizzes: 2-3 topic quizzes	
saturated, unsaturated, or supersaturated		
solutions, determine a solution type from	Test: Unit 7 Exam	
Table G, differentiate between dilute and		
concentrated solutions, calculate		
concentrations of a solution using the		
following: molarity, percent by mass, percent		
by volume, parts per million, explain a		
solute's effect on a solution (colligative		
properties)		

Differentiation/Enrichment	Materials	Resources

Subject and Grade:	Regents Chemistry	School Year:	2023-2024
Unit Title:	8 - Kinetics and Equilibrium	Author/s:	Caitlin Rejman

NYS Next Gen Learning Standards	Essential Question/Big Ideas
---------------------------------	------------------------------

 HS-PS1-4. Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy. HS-PS1-5. Apply scientific principles and evidence to explain how the rate of a physical or chemical change is affected when conditions are 	 What does equilibrium mean in chemistry? Why is there a change in temperature when chemical reactions happen? How can the rate of reaction be influenced?
varied. HS-PS1-6. Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.	

Brief Unit Summary	Content Vocabulary
The focus of this unit is on the properties affecting rates of reaction and the shifts between reactant and product. Reaction energy changes are expressed graphically and calculated mathematically.	Reaction rate, collision theory, reaction mechanism, nature of reactants, concentration, surface area, pressure, catalyst, temperature, equilibrium, physical equilibrium, phase equilibrium, solution equilibrium, chemical equilibrium, le chatelier's principle, enthalpy, entropy, potential energy diagram, endothermic reaction, exothermic reaction, activated complex, activation energy

Content Skills or Learning Targets	Assessments (Pre-Assessments, Formative, and Summative)	Timeframe
Explain how the collision theory applies to energy and phases of matter in a reaction,	Lab: Rates of Reaction, Equilibrium Mini Lab, Le Chatelier's Principle, Breakout Room	3 Weeks February - March
calculate how a reaction can reach		
equilibrium, read potential energy diagrams to obtain information about a reaction, compare	Quizzes: 2-3 topic quizzes	
properties of phases of matter and contrast	Test: Unit 8 Exam	
how they differ in entropy, explain how a catalyst affects the reaction pathway and		
activation energy, analyze the effect of stress		
on a system		

Differentiation/Enrichment	Materials	Resources

Subject and Grade:	Regents Chemistry	School Year:	2023-2024
Unit Title:	9 - Acids, Bases, Salts	Author/s:	Caitlin Rejman

NYS Next Gen Learning Standards	Essential Question/Big Ideas
HS-PS1-11 . Plan and conduct an investigation to compare properties and behaviors of acids and bases.	 How do acids and bases play a role in everyday life? How do acids and bases impact our environment? What determines if a compound is classified as an acid, base, or salt?

Brief Unit Summary	Content Vocabulary
The focus of this unit is compounds classified as acids with a hydronium ion, bases with a hydroxide ion, or the resulting neutral salts composed of metals and nonmetals. Properties, reactions, and concentration calculations are the priority.	Amphoteric, Arrhenius acid, Arrhenius base, bronsted-lowry acid, bronsted-lowry base, electrolyte, hydronium ion, hydroxide ion, indicator (acid/base), neutralization, pH scale, titration

Content Skills or Learning Targets	Assessments (Pre-Assessments, Formative,	Timeframe
	and Summative)	

Compare and contrast properties of acids,	Lab: Properties of Acids and Bases, Titration,	3 Weeks
bases, and salts, compare the Arrhenius and	Cabbage Juice Indicator	March
Bronsted-Lowry theories of acids and bases,		
explain and give examples of neutralization	Quizzes: 2-3 topic quizzes	
reactions, calculate the molarity of an		
unknown solution, describe how pH works	Test: Unit 9 Exam	
and determine the pH of an unknown solution		
experimentally		

Differentiation/Enrichment	Materials	Resources

Subject and Grade:	Regents Chemistry	School Year:	2023-2024
Unit Title:	10 - Redox	Author/s:	Caitlin Rejman

NYS Next Gen Learning Standards	Essential Question/Big Ideas
HS-PS1-12. Use evidence to illustrate that some chemical reactions involve the transfer of electrons as an energy conversion occurs within a system.	 What drives electrical energy in chemical reactions? What is an electric current? What properties allow elements to undergo redox reactions?
HS-PS3-3. Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.	

Brief Unit Summary	Content Vocabulary
This unit focuses on the movement of electrons between elemental electrodes to create an electrical current. The chemical/electrical energy	Redox, Reduction, Oxidation, Reducing agent, oxidizing agent, oxidation number, half reaction, electrode, voltaic cell, salt bridge,

conversion is expressed with reaction formulas and electrochemical cell	electrochemical cell, electrolytic cell, anode, cathode
diagrams.	

Content Skills or Learning Targets	Assessments (Pre-Assessments, Formative, and Summative)	Timeframe
Define and identify oxidation and reduction reactions, assign oxidation numbers to elements in a compound, write and balance half reactions, identify oxidizing agents and reducing agents, distinguish between voltaic and electrolytic cells, identify the components of an electrochemical cell, determine the direction of electrons and ions through an electrochemical cell, determine, using Table J, whether a reaction is spontaneous or not	Lab: Redox Station Experiments and Demos Quizzes: 2-3 topic quizzes Test: Unit 10 Exam	3 Weeks April

Differentiation/Enrichment	Materials	Resources

Subject and Grade:	Regents Chemistry	School Year:	2023-2024
Unit Title:	11 - Organic	Author/s:	Caitlin Rejman

NYS Next Gen Learning Standards	Essential Question/Big Ideas
HS-PS1-3. Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.	 Why are organic compounds important in the real world? What are the most important structures and reactions in organic chemistry. How are organic compounds named?

Brief Unit Summary	Content Vocabulary
The focus of this unit is the structure of hydrocarbons and their functional groups. Basic properties and select organic reactions are also discussed. An emphasis is put on the IUPAC system of naming organic compounds.	Addition reaction, alcohol, aldehyde, alkane, alkene, alkyne, amide, amine, amino acid, dehydration synthesis, ester, esterification, ether, fermentation, functional group, halide, hydrocarbon, isomer, ketone, monomer, organic acid, organic chemistry, polymer, polymerization, primary, saponification, saturated hydrocarbon, secondary, substitution reaction, tertiary, unsaturated hydrocarbon

Content Skills or Learning Targets	Assessments (Pre-Assessments, Formative, and Summative)	Timeframe
Identify organic compounds versus inorganic	Lab: Organic Model Lab	3 Weeks
Identify organic compounds versus inorganic compounds based on structure, name, or characteristics of an unknown compound, recognize the characteristics of organic compounds, differentiate between aliphatic, aromatic, saturated, and unsaturated compounds, name organic compounds based on IUPAC rules, with the help of table P and Q, draw organic compounds from an IUPAC name, distinguish between alkynes, alkenes, and alkanes, name and identify isomers, identify various functional groups of organic compounds using Table R, categorize various organic reactions properly including addition, substitution, polymerization, esterification,	Lab: Organic Model Lab Quizzes: 2-3 topic quizzes Test: Unit 11 Exam	3 Weeks April - May
fermentation, saponification, and combustion.		

Differentiation/Enrichment	Materials	Resources

Subject and Grade:	Regents Chemistry	School Year:	2023-2024
Unit Title:	12 - Nuclear	Author/s:	Caitlin Rejman

NYS Next Gen Learning Standards	Essential Question/Big Ideas
HS-PS1-8 . Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.	 How are radioactive isotopes used in real life? Is nuclear energy a global energy solution?

Brief Unit Summary	Content Vocabulary
The unit prioritizes the changes happening during fission, fusion, and natural transmutation in the nucleus of atoms. Energy release is demonstrated with nuclear reaction equations and half life decay is calculated.	alpha particle, artificial transmutation, beta particle, fission, fusion, gamma radiation, half-life, radioactive tracer, radioisotope, transmutation

Content Skills or Learning Targets	Assessments (Pre-Assessments, Formative,	Timeframe
	and Summative)	

Predict the stability of an isotope based on the	Lab: Twizzler Half Life	2 Weeks
ratio of neutrons and protons in its nucleus,		May
understand that while most nuclei are stable,	Debate: The Building of a Power Plant	
some are unstable and spontaneously decay	Quizzos: 2, 2 topio guizzos	
emitting radiation, calculate the initial amount	Quizzes: 2-3 topic quizzes	
of the fraction remaining, or the half-life of a	Test: Unit 12 Exam	
radioactive isotope, using the half-life		
equation, understand the concept of half-life,		
differentiate between the following emissions		
based on mass, charge, ionizing power, and		
penetrating power: alpha, beta, positron, and		
gamma, determine the type of decay and write		
nuclear equations, compare and contrast		
fission and fusion reactions, distinguish		
between natural and artificial transformations,		
complete nuclear equations and predict		
missing particles from nuclear equations,		
understand the change in energy in a nuclear		
reaction, be aware of the risks associated with		
radioactivity, recognize the beneficial uses		
and real world application of radioactive		
isotopes.		

Differentiation/Enrichment	Materials	Resources