Southern Cayuga Central School District Emily Howland Elementary Curriculum Map 2023-2024

Subject: Math
Grade: 6

Resources and Major Assessments		
Super Teacher Engage NY IXL	Web Sites Math Snacks* Math Playground	Texts and Assessments Eureka Math Squared Assessments Teacher created resources
	Vocabulary	Tools and Representations
	equivalent ratio percent quantity rate ratio unit of measurement unit rate value of a ratio	tape diagram double line graph ratio table coordinate plane

Instructional Days: November		
Content (What Students Should Know)	Essential Questions	Skills (What Students Should Be Able To Do)
Dividing Fractions by Fractions 6.NS.A. 1 6.NS.B. 3 6.NS.B. 2 6.NS.B. 3 6.NS.B. 4	How do you change a mixed number to an improper fraction? Interpret and compute quotients of fractions, and solve How do you convert a mixed number to a decimal and an improper fraction to a decimal? What is the relationship between a fraction and its reciprocal? How do you divide a fraction by a whole number? How do you divide a fraction by another	Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions. Fluently divide multi-digit numbers using a standard algorithm. Fluently add, subtract, multiply, and divide multi-digit decimals using a standard algorithm for each operation. Find the greatest common factor of two whole numbers less than or equal to 100. Use the distributive property to express a sum of two whole numbers $1-100$ with a common factor as a multiple of a sum of two whole numbers with no common factor other than 1 . Find the least common multiple of two whole numbers less than or equal to 12 .

Instructional Days: December- January		
Content (What Students Should Know)	Essential Questions	Skills (What Students Should Be Able To Do)
Rational Numbers Understanding Positive and Negative Numbers on the Number Line 6.NS.C. 5 6.NS.C.6a 6.NS.C.6c Order and Absolute Value 6.NS.C.6c 6.NS.C. 7 Rational Numbers and the Coordinate Plane 6.NS.C.6b 6.NS.C.6c 6.NS.C. 8	How do you locate rational numbers on a number line? How are integers and absolute value used in real world situations? How are decimals and fractions related? Understand the difference between a terminating and repeating decimal What are equivalent fractions? How do you reduce a fraction using the greatest common factor?	Understand that positive and negative numbers are used together to describe quantities having opposite directions or values. Use positive and negative numbers to represent quantities in real world contexts, explaining the meaning of 0 in each situation. Understand a rational number as a point on the number line. Use number lines and coordinate axes to represent points on a number line and in the coordinate plane with negative number coordinates. Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line. Recognize that the opposite of the opposite of a number is the number itself, and that 0 is its own opposite. Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane. Recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes. Find and position integers and other rational numbers on a horizontal or vertical number line. Find and position pairs of integers and other rational numbers on a coordinate plane. Understand ordering and absolute value of rational numbers. Interpret statements of inequality as statements about the relative position of two numbers on a number line.

$\left.\begin{array}{|l|l|l|l|}\hline & & & \begin{array}{l}\text { Write, interpret, and explain statements of order for rational numbers in } \\ \text { real-world contexts. } \\ \text { Understand the absolute value of a rational number as its distance from } 0 \text { on } \\ \text { the number line. Interpet absolute value as magnitude for a positive or } \\ \text { negative quantity in a real-world situation. }\end{array} \\ \text { Distinguish comparisons of absolute value from statements about order. } \\ \text { Solve real-world and mathematical problems by graphing points on a } \\ \text { coordinate plane. Include use of coordinates and absolute value to find } \\ \text { distances between points with the same first coordinate or the same second } \\ \text { coordinate. }\end{array}\right]$

Expressing Operations in Algebraic Form	How can we solve one step algebraic	Use variables to represent numbers and write expressions when solving a real-world or mathematical problem. Understand that a variable can represent
6.EE.A.2a	equations given a variable?	an unknown number, or, depending on the purpose at hand, any number in a specified set.
6.EE.A.2b Writing and Evaluating	How can we solve two-step algebraic equations given a	Solve real-world and mathematical problems by writing and solving equations of the form $\mathrm{x}+\mathrm{p}=\mathrm{q} ; \mathrm{x}-\mathrm{p}=\mathrm{q} ; \mathrm{px}=\mathrm{q} ;$ and $x x \mathrm{p} p=\mathrm{q}$ for cases in which p, q, and x are all nonnegative rational numbers.
Writing and Evaluating Expressions and Formulas 6.EE.A.2a	variable?	and x are all nonnegative rational numbers.
6.EE.A.2c 6.EE.B. 6		Write an inequality of the form $\mathrm{x}>\mathrm{c}, \mathrm{x} \geq \mathrm{c}, \mathrm{x} \leq \mathrm{c}$, or $\mathrm{x}<\mathrm{c}$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of these forms have infinitely many solutions; represent solutions of such inequalities on a number line.
Solving Equations 6.EE.B. 5		Use variables to represent two quantities in a real-world problem that change in relationship to one another.
6.EE.B. 6		
6.EE.B. 7		
Applications of Equations 6.EE.B. 5		
6.EE.B. 6		
6.EE.B. 7		
6.EE.B. 8		
6.EE.C. 9		

Resources and Major Assessments	
Web Sites Brain Pop Super Teacher Engage NY Math Playground Problem Attic Math Snacks Learn Zillion IXL	Texts and Assessments Eureka Math Squared Assessments Teacher created resources
Vocabulary	Tools and Representations
equation equivalent equations expression solution variable combine like terms terms coefficient constant	bar model geometric representations

Instructional Days: March-May		
Content (What Students Should Know)	Essential Questions	Skills (What Students Should Be Able To Do)
Area, Surface, Area, and Volume Problems	What is the difference between volume and area?	Find area of triangles, trapezoids, and other polygons by composing into rectangles or decomposing into triangles and quadrilaterals. Apply these techniques in the context of solving real-world and mathematical problems.
Area of Triangles, Quadrilaterals, and Polygons	How can we use nets to help us calculate the surface area of	Find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.
6.G.A. 1	three dimensional shapes?	Draw polygons in the coordinate plane given coordinates for the vertices. Use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.
Polygons on the Coordinate Plane $\text { 6.G.A. } 3$		Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.
Volume of Right Rectangular Prisms 6.G.A. 2		Recognize that a statistical question is one that anticipates variability in the data related to the question and accounts for it in the answers.
Nets and Surface Area $\text { 6.G.A. } 4$ Statistics		Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population.
Understanding Distributions 6.SP.A. 1		Understand that the method and sample size used to collect data for a particular question is intended to reduce the difference between a population and a sample taken from the population so valid inferences can be drawn

Resources and Major Assessments		
Brain Pop Engage NY Problem Attic	LXLSuper Teacher Math Playground Learn Zillion	Texts and Assessments Eureka Math Squared Assessments Teacher created resources
	Vocabulary	Tools and Representations
	triangle cube surface area volume height hexagon net prism pyramid	coordinate planes nets prisms rulers

Priority Standard

Standards of Concern

Standards of Concern

