Southern Cayuga Central School District – Curriculum Map

Subject: Regents Physics

School Year: 2023-2024

Title or Topics w/ NYS Standards	Essential Questions & Vocabulary	Content Skills (Activities to cover Essential Questions)	Major Assessments (Tests, Project, etc.)	Time Frame
Scientific Basics – Units, Dimensions, Measurements, and Error M1.1, M2.1, M3.1, S2.1-S2.4, S3.4	 What is science and how has it influenced the world? Why do significant figures and scientific notation matter? Why do scientists address sources of error? Why can it be said that mathematics is the universal scientific language? How do mathematical equations help us understand the world around us? Vocabulary- Science, Scientific Process, Scientific Theory, Qualitative and Quantitative Observations, Significant Figures, SI Units, Scientific Notation, Inverse and Direct Relationships, Independent and Dependent Variables, Axis, Accuracy and Precision, 	 What is Science? Using Laboratory Tools Significant Figures and Scientific Notation Sources of Error Using math to explain observations. Understanding symbols in Physics. Visual Representation of Data 	Lab: Measurements in the Laboratory and Limits of Tools Lab: Significant Figures, Scientific Notation, Sources of Error Lab: Explaining observed phenomena using mathematical approximations. Lab: Graphing Data Quizzes (2) Test	1-2 weeks

Introduction to (Mathematical Processes	 What mathematical skills are required to analyze complex systems in the natural world? What are vectors and scalars? What is Pythagorean Theorem and how can we use it? What is trigonometry, sine, cosine, and tangent? 	 Basic Algebra Skills (up to 4 variables, 2 equations) Basic Scalars and Vectors (Vector addition) Pythagorean Theorem and Basic Trig Functions (Sine, Cosine, Tangent) Advanced Algebra Skills (Multi equation and multiple unknowns) 	
	Scalar, Vector, Angles, Sine Cosine, Tangent, Hypotenuse, Adjacent, Opposite, Algebra,		

Kinematics HS-PS2-1.	 Using vectors and trig functions to describe values with magnitude and direction. – Why is it beneficial to use vectors when analyzing motion? Developing/Understanding Mathematical Equations for Motion. – How do kinematic equations help us understand out environment? Analyzing changing systems: velocity and acceleration Changing an objects motion and forces How does gravity affect the universe? Why is the acceleration due to gravity constant for many objects on Earth's Surface? Why are different directions analyzed separately when dealing with 	 Vectors and Trig Functions, Direction Position, Displacement and Distance Velocity Acceleration Acceleration and Forces Projectile Motion Gravity 	Lab: 1D Motion Lab: Measuring Acceleration Lab: Measuring Gravity Quizzes Test	5-6 weeks
	projectiles? Vocabulary- Displacement, Velocity, Acceleration, Vector, Scalar, Speed, Mass, Force, Resultant, Component, Initial, Final, Projectile, Hangtime, Gravity, Free-Fall, Projectile, Dimensions			

Newton's Laws of Motion PS2-1. HS-PS2-3	 How do forces shape and change the world around us? How do we apply Newton's Laws to every type of system? Vocabulary- Force, Equilibrium, Inertia, Momentum, Free-body diagrams, Net, 	 Newton's Laws (In-Depth) Different Types of Forces Specific Forces: Friction, Gravity, Applied, Tension, EM Forces, Nuclear Forces (Weak and Strong) 	Lab: Balancing Forces Lab: Inertia Lab Lab: Measuring Acceleration Part 2 Lab: Measuring Gravity Part 2 Lab: Friction and Normal Force Lab: Friction and Normal Quizzes Test	5-6 weeks
Intro to energy, Work, Power and Simple Machines HS-PS3-1. HS-PS3-2	 What is work and power? How do forces at angles affect work/power. What are the simple machines and evidence that they help humans using math/physics? What are the different forms of energy and how is energy converted between forms? How is energy conserved? What is thermal energy? Vocab – Work, Power, Simple Machines, Ideal Machine, Mechanical Advantage, Kinetic Energy, Potential Energy, Stored Energy, Electrical Potential Energy, Thermal Energy, Sound, efficiency 	 Looking at different systems and how energy is converted between different forms. Kinetic Energy Potential Energy (Gravitational, Elastic, Chemical, Electric) Heat Nuclear Energy Radiation Laws of Thermodynamics 	Lab – Conservation of energy in pendulum Lab – Work and Potential energy Lab – Conservation of Energy on an incline Lab - Calorimetry Quizzes Test	4-6 weeks

Momentum and Conservation of Momentum HS-PS2-2 HS-PS2-3	 What is momentum and what is a conserved quantity in physics? What is an isolated system and how does momentum behave within an isolated system? Vocab – Momentum, impulse, conservation, isolated system 	 Momentum and Conservation + calculat momentum Multi-obje systems in 2 dimensior Impulse – Momentum theory 	ect Lab – Elastic Collisions	2-4 weeks
Centripetal Acceleration, Uniform Circular Motion, Gravity and Orbits HS-PS2-4. HS-ESS1-4.	 What keeps objects traveling in a circular path – despite inertia? What is centripetal acceleration and centripetal force? How can we calculate them? What is gravity and how does it shape the world around us? Calculating the force of gravity. Vocab – Centripetal, uniform circular motion, at a distance, period, weight, mass 	Inertia and acceleration Uniform circular motion Force of gravity calculati Kepler's Laws of Planeta motion.	ions approximated to uniform circular	2-3 weeks

Waves and Energy Transfer, Sound, Light HS-PS3-1 HS-PS4-1	 What are waves? How is energy transferred? What is sound? What is light? Frequency, wavelength, speed of light How does modern technology communicate? How is information transferred? Vocab – Wave, energy, frequency, wavelength, sound, light, photon, amplitude, harmonic, peak, trough, 	 Analyzing how waves transfer energy. Looking at how waves and matter interact. Harmonics 	Lab: Calculating the speed of sound. Test: Waves, Sounds and Light	2-3 weeks
Reflection and Refraction, Mirrors and Lenses, Interference of Light HS-PS4-1 HS-PS4-3	 How does light interact when it bounces and when it passes through? How can we take advantage of the properties of light to make our lives easier? Vocab - Mirror, Lenses, Reflection, refraction, angle of incident, polarization, vacuum, index of refraction, 	 How do waves interact with matter? Lenses and Mirrors (real and imaginary images) Interference 	Lab: Mirror Lab Lab: Lenses Lab Lab: Polarization of Light Quiz: Reflection and Refraction	2-3 weeks

Electricity and Magnetism, Static Electricity, Electric Fields HS-PS1-3 HS-PS2-4 HS-PS3-5 HS-PS3-6	 Static Electricity Electric Fields Current Electricity and Circuits Magnetic Fields Electromagnetic induction, Electromagnetism Electricity, Magnetism, Fields Induction, Conduction, Resistance, Current, Potential, Volts, Amperes, Ohms, Series, Parallel, circuit, switch, Electrostatic,	 Electrical Force Electrical Circuits Series and Parallel Circuits + Diodes 	Lab: Magnetic Field Lab Lab: EM waves Lab: Circuits Test: Static Charges + Fields	2-3 weeks
Modern Physics and The Quantum World HS-PS1-8	 Standard Model What is matter made of? Weak and Strong Forces: Forces within the nucleus Decay of Particles Quark, Lepton, Hadron, Baryon, Meson, Standard Model, Weak Force, Strong Force, energy levels, quantized, photon, 	 Standard Model Particle Accelerators utility What holds the nucleus together and where do we get energy from mass. 	Test: Standard Model and Nuclear Forces Lab: Building Molecules	1-2 weeks