<u>Southern Cayuga Central School District</u> – <u>Curriculum Map</u>

Subject: **Robotics** School Year: **2023-2024**

Title or Topics w/ NYS Standards	Essential Questions & Vocabulary	Content Skills (Activities to cover Essential Questions)	Major Assessments (Tests, Project, etc.)	Time Frame
Unit 1: Introduction to Engineering and STEM NGSS Standards: HS-ETS1-3	 What do engineers need to know to design and operate a robotic system to do work? What is technology? What is engineering? What is the engineering design process? What careers involve robotics? How are Vex components used on a robot? Vocabulary: engineering, chassis, bumper angle, motor coupler, spacer, cortex, gear, shaft, range finder, bumper switch, shaft encoder, potentiometer, limit switch, light sensor, line followers, slalom, manipulator, input, output 	 Paper tower engineering Orthographic view Discovery Channel – Robotics Rising Career connections 	STEM Challenge #2 STEM Challenge #3 STEM Challenge #4	1-2 weeks

Unit 2: Intro to Robotics	How do parts work together to form a	Degrees of freedom of a	Build: Basic Armbot	5 weeks
Building	functioning robot?	human arm	Challenge: Obstacle	
	How are motors incorporated	 Elevator lift 	Course	
NGSS Standards: HS-ETS1-2,	into a drivetrain?	 Linkage support 	Challenge: Sack	
HS-ETS1-3	 How can elevator stages be 	Time So capped	Attack	
	added for height?			
	 Can linkages have benefits over 			
	elevators?			
	 How does passive assistance 			
	change the work load of a robot?			
	How can gears be changed for desired			
	speed or power?			
	How is mechanical advantage			
	achieved?			
	How can you configure the joystick to			
	control all motors and mechanisms of a			
	robot?			
	Vocabulary: drivetrain, chassis, rotating			
	joints, elevators, linkages, passive			
	assistance, torque, mechanical			
	advantage, gear reduction, passive			
	assistance			

Unit 3: Movement and Basic Coding NGSS Standards: HS-ETS1-2, HS-ETS1-3, HS-ETS1-4	How do programmers design, write, and execute instructions to control a robot? • What are robot behaviors? • What are the behaviors of the robot in the simple labyrinth challenge? How do we program a robot to reproducibly travel the same distance? • What are encoder sensors and how are they used? How do you program a robot to autonomously straighten its path while traveling forward? • What parts of a drive forward program need to be developed further to have the robot travel a straight path? • How can we enable the robot to adjust the power levels of the motors automatically? • How can we use variables to improve out programs? How do you program a robot to perform the same behavior differently? • How can we reuse lines of code (for behaviors) multiple times without rewriting the code? • How do parameters expand the utility of functions in the program? Vocabulary: labyrinth, encoder, autonomous, automated, variable, loops,	 PBJ activity Movement and Turn coding Power levels Encoder code If/else statement code Loop code 	Challenge: Labyrinth code Challenge: Drive straight Challenge: Maze	6 weeks
	value, pseudocode, program, parameters, if/else statement			

Unit 4: Sensors	How can feedback from a digital touch	Bumperbot Challenge Sontry II Challenge	Build: Soccer Bot	6 weeks
NGSS Standards: HS-ETS1-2, HS-ETS1-3	sensor like a bumper be used to control robotics behaviors? • What is the relationship between the status of the touch sensor and the values returned to the Cortex? How can the sonar sensor be used to control robotics behavior? • What is the proper wire placement and configuration? How can the light sensor be used to control robotic behavior? • What is the threshold value and how is it used with a light sensor? How do we program a robot to use line following to control robot behaviors? Vocabulary: bumper, light sensor, sonar, threshold, loops, analog input, digital input, behaviors	 Sentry II Challenge Light tag Challenge Tablebot Challenge Slalom Challenge 	Challenge: Maze 2.0	o weeks

Unit 5: Control Functions	What are the commands that can be	Operator Control	Challenge:	3 weeks
	programmed for wireless control of a	Challenge	Pathfollow	
NGSS Standards: HS-ETS1-2,	robot?			
HS-ETS1-3	 How are autonomous and 			
	operator control different and			
	alike?			
	How can we program the robot			
	to perform autonomous tasks			
	while using the wireless remote with operator control?			
	How do while loops and if/else			
	statements work together to cause a			
	robot to perform a desired behavior?			
	• '			
	Vocabulary: RC control, while loop,			
	infinite loop, word circles, button			
	steering			

Unit 6: Final Project	How can we incorporate all coding and	Engineering notebook	Final: Swept Away	3 weeks
	building skills into designing and building	2 Engineering notebook	Challenge	
NGSS Standards: HS-ETS1-1,	a robot for a one on one challenge in a			
HS-ETS1-2, HS-ETS1-3, HS-	modified competition field?			
ETS1-4	How can designs be used for			
	offensive/defensive strategies?			
	How can the autonomous code			
	give a competitive advantage?			
	Vocabulary: analysis, pre-autonomous,			
	enable, disable			

Unit 7: Competition NGSS Standards: HS-ETS1-1 HS-ETS1-2, HS-ETS1-3, HS- ETS1-4	How can we incorporate all coding and building skills to solve the problem presented by the current Vex VRC Challenge? • How does strategic design influence building both on a team and against potential opponents? • How can cost benefit analysis be factored into design and building?	 Vex in the Zone Vex Nothing But Net Engineering notebook 	Challenge: Current VRC competition	12 weeks
	Vocabulary: analysis, pre-autonomous, enable, disable, platform, elevation, game objects, perimeter, gravity, accuracy, agility			