Title or Topics w/ NYS Standards	Essential Questions \& Vocabulary	Content Skills (Activities to cover Essential Questions)	Major Assessments (Tests, Project, etc.)	Time Frame
Qualitative Data	- How can I display data in a way that is easy for others to understand? - Qualitative Data - Frequency - Percent - Pie Chart - Frequency Distribution (Bar Graph)	- Reading Pie Charts - Reading Frequency Distributions - Google Sheets Basics - Creating Pie Charts with Google Sheets - Creating Bar Graphs with Google Sheets - Class Discussion - Article "Pie Charts are the Worst" - Misleading Graphs - What makes it misleading? - How can it be fixed? - What was the author's objective in using a misleading graph?	- Warm Ups - Google Sheets Assignments (Exit Tickets) - Homework Assignments - Quiz - Project \#1 Visualizing Qualitative Data	September
Collecting Data - S-IC.B. 3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.	- Why and when is sampling necessary? - How can I collect random, unbiased data? - Population - Sample - Survey - Random - Sampling - Simple Random Sampling - Systematic Sampling - Stratified Sampling - Cluster Sampling	- The ethics of unbiased and anonymous surveys - Using Google Forms - Evaluating Surveys for Bias - Selecting Random Samples Using: - Simple Random Sampling (Random Number Generators) - Systematic Sampling - Stratified Sampling - Cluster Sampling - Evaluating Samples and Sampling Methods for Bias - Writing Objectives	- Warm Ups - Exit Tickets - Homework Assignments - Project \#2 Sampling Practice	September

	- Self-Selecting Sample - Convenience Sample - Bias - Objective			
Quantitative Data (Center and Spread of Data) - S-ID.A. 1 - Represent data with plots on the real number line (dot plots, histograms, and box plots). - S-ID.A. 2 - Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. - S-ID.A. 3 - Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). - S-IC.B. 6 - Evaluate reports based on data.	- How can I display data in a way that is easy for others to understand? - How can I summarize a set of data using numeric values? - Quantitative Data - Median - $1^{\text {st }} / 3^{\text {rd }}$ Quartile - Minimum / Maximum - Interquartile Range - 5 Number Summary - Box Plot - Outlier - Mean - Standard Deviation - Histogram - Skewed Left - Skewed Right - Symmetric - Relative Frequency Histogram	- Calculating the Median, Quartiles, and Interquartile Range - Interpreting the Median and IQR - Creating Box Plots - Interpreting Box Plots - Using the IQR to mathematically identify outliers - Calculating the Mean and Standard Deviation - Using the Mean and Standard Deviation to mathematically identify outliers - When to use the median vs. the mean - Reading Histograms and Relative Frequency Histograms - Creating Histograms on Google Sheets - Analyzing and Writing Results	- Warm Ups - Exit Tickets - Google Sheets Assignments - Homework Assignments - Quizzes - Project \#3 Quantitative Data	October
The Normal Distribution - S-ID.A. 4 - Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.	- How can I extract information about a population with a sample of data? - Normal Distribution - The Empirical Rule - Percentages - Z-score - Percentile	- What does the Normal Distribution "sound" like? Using popcorn to visualize and understand a Normal Distribution - Data that is typically Normally Distributed - Using the Empirical Rule to learn information about a population - Calculating z-scores	- Warm Ups - Exit Tickets - Homework Assignments - Quiz - Project \#4 Normally Distributed Data	November

		- Using z-scores to learn information about a population - Using the normal continuous distribution function on the graphing calculators - Calculating percentiles - Using the inverse normal function on the graphing calculators - Using percentiles to compare individuals from two populations		
Regression - S-ID.B. 6 - Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. - S-ID.B.6.A - Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. - S-ID.C. 7 - Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. - S-ID.C. 8 - Compute (using technology) and interpret the correlation coefficient of a linear fit. - S-ID.C. 9 - Distinguish between correlation and causation.	- How can I describe the relationship between two variables mathematically? - Correlation - Causation - Lurking Variable - Regression - Linear - Exponential - Correlation Coefficient - Scatterplot - Trend Line - Interpolation - Extrapolation - Reliable sources	- DESMOS - Charge! Activity - Comparing two variables using linear regression - Using the correlation coefficient to describe the strength and direction of correlation - Interpolating and Extrapolating information using the regression equation - Interpreting the slope and y intercept of a regression equation - Activity - "Funny Graphs that Show Correlation Between Completely Unrelated Stats" - Correlation vs. Causation - Identifying possible lurking variables - Creating scatterplots on Google Sheets - Project \#5 - Comparing two variables that have a correlation that is not linear - Comparing two variables using	- Warm Ups - Exit Tickets - Google Sheets Assignments - Homework Assignments - Quizzes - Project \#5 Linear Regression - Project \#6 Exponential Regression	December

		exponential regression - Using the correlation coefficient to determine the validity of the equation - Interpolating and Extrapolating information using the regression equation - Interpreting the percent growth or percent decay - Finding reliable information on the Internet - Project \#6		
Midterm Project	- How can I display and share information in a way that will make others want to learn about my topic? - Infographic	- Analyze and describe example infographics - How to use piktochart.com - Select topic and collect information - Informal meeting - Continue collecting information - Work on infographic - Presentations	- Midterm - Infographic - Midterm - Presentation	January
Probability - S-CP.A. 1 - Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). - S-CP.A. 2 - Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. - S-CP.A. 3 - Understand the conditional	- How can I determine how likely an event is? - How can I determine how likely multiple events are? - Probability - Experiment - Outcome - Event - Tree Diagram - Sample Space - Sets - Venn Diagram - Union - Intersection - Probability Addition	- Monty Hall Activity - Intro to Probability with equally likely outcomes - Probabilities with M\&M's - Single event - Union - Intersection - Conditional - Union and Intersection with Venn Diagrams - Adding probabilities - Tree Diagrams with outcomes of different likeliness - Calculating Expected Value - Conditional Probabilities - Determining independence	- Warm Ups - Exit Tickets - Homework Assignments - Quiz - Project \#7 Create a Probability Based Game	February March

probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.

- S-CP.A. 4 - Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities.
- S-CP.A. 5 - Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations.
- S-CP.B. 6 - Find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A , and interpret the answer in terms of the model.
- S-CP.B. 7 - Apply the Addition Rule, $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$, and interpret the answer in terms of the model.
- S-CP.B.8 - Apply the general Multiplication Rule in a uniform probability model, $\mathrm{P}(\mathrm{A}$ and B$)=$ $P(A) P(B \mid A)=P(B) P(A \mid B)$, and interpret the answer in terms of the model.
- S-CP.B.9-Use permutations and combinations to compute probabilities of compound events and solve problems.

Rule

- Expected Value
- Conditional Probability
- Independent
- Dependent
- Two-way frequency table
- Multiplication property of probability
- Combinations
- Permutations
mathematically
- Are these two events dependent on one another? Activity
- Using Two-Way Frequency tables
- Combinations vs. Permutations Lock Box Challenge
- Calculating Combinations and Permutations
- Using combinations and permutations in probability
- Revisit the Monty Hall Activity
- Project \#7

Binomial Probability Distributions	- How can we use probabilities to make decisions? - Binomial Probability - Probability Distribution - Probability Histogram - Binomial Experiment - Binomial Probability Distribution - Expected Value - Confidence Interval - 95\% Confidence Interval	- Is this a fair die? - Group Activity - Mathematically proving whether or not the die is fair - Calculating a 95\% C.I. - Comparing M\&M samples using a binomial probability - Do these probabilities make sense? Activity - Project \#8	- Warm Ups - Exit Tickets - Homework Assignments - Quiz - Project \#8 - Is the representation accurate?	March - April
Conducting Experiments	- How can I accurately, effectively, and ethically collect data where I need to use test subjects? - Experiment - Experimental Design - Factors - Treatment - Subject - Control Group - Placebo - Blinding - Single-blind - Double-blind	- Tuskegee Experiments - Article \& Group Discussion - APA's Code of Ethics - How would you show whether or not mint helps students on exams? Activity - The steps of the experimental design process - Project \#9	- Warm Ups - Exit Tickets - Homework Assignments - Quiz - Project \#9 Design an Experiment (Do not run it at this point!)	April
Hypothesis Testing	- How to I analyze data after I conduct an experiment? - What can information from an experiment actually tell me? - Hypothesis - Null Hypothesis	- What do I need for this experiment? - Group Activity - Types of Hypothesis - Can we prove something is true? - Group Activity - Calculating p-values for twotailed test - Calculating p-values for one-	- Warm Ups - Exit Tickets - Homework Assignments - Quiz - Project \#10 Conduct an Experiment	May

	- Alternative Hypothesis - Two-tailed test - Left-tailed test - Right-tailed test - Type 1 Error - Type 2 Error - P-value	tailed test - What if we are wrong? - Types of Errors - Group Discussion - Project \#10		
Final Project				June

